divergence()
computes the regularized topic divergence scores to help users
to find the optimal number of topics for LDA.
Arguments
- x
a LDA model fitted by
textmodel_seededlda()
ortextmodel_lda()
.- min_size
the minimum size of topics for regularized topic divergence. Ignored when
regularize = FALSE
.- select
names of topics for which the divergence is computed.
- regularize
if
TRUE
, returns the regularized divergence.- newdata
if provided,
theta
andphi
are estimated through fresh Gibbs sampling.- ...
additional arguments passed to textmodel_lda.
Details
divergence()
computes the average Jensen-Shannon divergence
between all the pairs of topic vectors in x$phi
. The divergence score
maximizes when the chosen number of topic k
is optimal (Deveaud et al.,
2014). The regularized divergence penalizes topics smaller than min_size
to avoid fragmentation (Watanabe & Baturo, forthcoming).
References
Deveaud, Romain et al. (2014). "Accurate and Effective Latent Concept Modeling for Ad Hoc Information Retrieval". doi:10.3166/DN.17.1.61-84. Document Numérique.
Watanabe, Kohei & Baturo, Alexander. (2023). "Seeded Sequential LDA: A Semi-supervised Algorithm for Topic-specific Analysis of Sentences". doi:10.1177/08944393231178605. Social Science Computer Review.