[experimental] Compute variance ratios with different hyper-parameters
Source:R/bootstrap.R
optimize_lss.Rd
[experimental] Compute variance ratios with different hyper-parameters
Arguments
- x
a fitted textmodel_lss object.
- ...
additional arguments passed to bootstrap_lss.
Details
optimize_lss()
computes variance ratios with different values of
hyper-parameters using bootstrap_lss. The variance ration \(v\) is defined
as $$v = \sigma^2_{documents} / \sigma^2_{words}.$$ It maximizes
when the model best distinguishes between the documents on the latent scale.
Examples
if (FALSE) {
# the unit of analysis is not sentences
dfmt_grp <- dfm_group(dfmt)
# choose best k
v1 <- optimize_lss(lss, what = "k", from = 50,
newdata = dfmt_grp, verbose = TRUE)
plot(names(v1), v1)
# find bad seed words
v2 <- optimize_lss(lss, what = "seeds", remove = TRUE,
newdata = dfmt_grp, verbose = TRUE)
barplot(v2, las = 2)
}